dploy-lib Documentation
Release 0.0.7-dev

Reuven V. Gonzales

Sep 27,2017

Contents

1 Wait, what is dploy?

2 Building Services

2.1 Getting started with services L e e

2.2 Servers Library .

3 ZeroMQ Transport Wrapper
3.1 Whycreate a Wrapper? v v v e

4 Dploy Notes

4.1 Common Message and Data Structure Definitions
5 API

5.1 Services Library L e e

52 ServersLibrary e

5.3 Transport Library
6 Indices and tables

Python Module Index

11
11

15
15
16
17

21

23

dploy-lib Documentation, Release 0.0.1-dev

dploy-lib is a shared library used throughout the dploy system. It provides a standard library to facilitate a more
coherent design between dploy’s various components.

Contents 1

dploy-lib Documentation, Release 0.0.1-dev

2 Contents

CHAPTER 1

Wait, what is dploy?

dploy is an application deployment system that is meant to be similar to systems like heroku. It utilizes many similar
technologies as heroku but allows for customization at various points in the stack. dploy was designed for Blue Water
Ads, by Reuven V. Gonzales. Many components of the dploy stack are provided as open sourced projects on github.

https://github.com/ravenac95

dploy-lib Documentation, Release 0.0.1-dev

4 Chapter 1. Wait, what is dploy?

CHAPTER 2

Building Services

One of the primary functions this library serves is to aid in the creation of new dploy services. Read more here to learn
how to build new services.

Getting started with services

The dploy stack is composed of a many separate services interacting with each other. The majority of these services
are built using zeromq as a transport the rest are built using HTTP to communicate. Since HTTP has a plethora of
tools for creating related web services dploylib does not need to do much to aid that process. However, ZeroMQ based
services can be more complicated to implement. The dploylib simplifies and unifies portions of this process through
it’s concept of services.

What are services?

In dploy, services are complete applications composed of multiple dploy servers. Each of these servers reacts to input
events on various zeromq sockets.

Simple Echo Service

The simplest way to understand services is to create a very simple service. Let’s start by creating a very simple echo
service.

Here is one of the simplest services you could define:

from dploylib import servers
from dploylib.services import Service

class EchoServer (servers.Server) :
@servers.bind_in('request', 'rep')
def echo_request (self, socket, received):
socket.send_envelope (received)

dploy-lib Documentation, Release 0.0.1-dev

service = Service()
service.add_server ('echo', EchoServer)

if name == '_ _main_ ':
config_dict = {
"servers": {
"echo": {
"request": {

"uri": "tcp://127.0.0.1:5000",
}I
}I
}I
}

service.run (config_dict=config_dict)

To run simply do:

$ python myservice.py

If you run the service you will be able to interact with it as follows:

>>> from dploylib.transport import Socket

>>> echo_socket = Socket.new('req', 'tcp://127.0.0.1:14445")
>>> echo_socket.send_text ('hello'")

>>> print echo_socket.receive_text ()

hello

Fantastic! You now have a working echo server.

If you can’t tell, server and service definition was inspired by both flask and django web development frameworks.
Let’s have a look at what just happened:

1. First we import servers. This import will allow us to create our echo server easily.

2. Next we import the Service class. If you’re familiar with flask, the service class is much like the Flask class
in that it can be instantiated at the module level and run as an application later.

3. For the next few lines we define the EchoServer class.
1. The first line of the class makes it so we subclass from Server.

2. The next line decorates the method echo_request. The decorator bind_in () provides instructions to the
containing server class, EchoServer. It tells the server class the following:

* Bind a zeromq REP socket named requests to the server
e The _in suffix on the decorator means the decorated method is the socket’s input handler

3. Finally, within the method echo_request, we define the echo server logic. It simply gets the data it receives
and sends it back to the user. When using dploylib’s sockets, data is received in a standard envelope. This will
be explained later.

4. The line starting with service = instantiates a Service object into the module’s namespace. On the next
line the EchoServer we defined on step 3 is registered to the service as a server named echo via the method
add_server.

5. A fake configuration is defined and set saved in config_dict

6. Finally, the service is started by the method run (). It takes the fake configuration as the keyword argument,
config_dict.

6 Chapter 2. Building Services

dploy-lib Documentation, Release 0.0.1-dev

To stop the server, use control-C.

Standard service configuration

One of the things that we don’t want to do is hard code configuration. However, in the previous example we hard
coded the configuration into the 1f _ _name_ == '__main__ ' block. Luckily, services are not meant to be
used in this way, although the facility is available for easy debugging or testing if necessary. Let’s do a better job by
using configuration files that we can change without touching any code.

dploy defines a standard configuration file that can is to be used with all services. The basic structure is able to
translate to a multitude of configuration languages, but YAML is chosen by default due to it’s writability, readability
and portability to other languages.

Here is a basic configuration:

servers: # Server configurations
echo: # Config for "echo" server
request: # Config for "echo" server's "request" socket

uri: tcp://127.0.0.1:14445 # URI for "request" socket

General configuration
general:
someconfigl: somevaluel
someconfig2: somevalue?2

If this file is saved to config. yaml we can simplify the previous service to this:

from dploylib import servers
from dploylib.services import Service

class EchoServer (servers.Server) :
@servers.bind_in('request', 'rep')
def echo_request (self, socket, received):
socket.send_envelope (received)

service = Service ()
service.add_server ('echo', EchoServer)

if name == '__main__':
service.run(config_file="config.yaml")

Now, all we have to do to change the uri of the request server is change the config.yaml file. At this time the service
does not yet have a standard command line interface. This feature is planned for the not-so-distant future.

Servers Library

Server setup for dploy-lib is inspired by heavily by flask. The syntax looks like this:

from dploylib import servers
class BroadcastServer (servers.Server) :
Bind a socket but don't listen for it's input. Useful for output

publish = servers.bind('pub', name='out')

@servers.bind_in('pull', name='in")

2.2. Servers Library 7

dploy-lib Documentation, Release 0.0.1-dev

def receive_message (self, socket, envelope):
self.sockets.publish.send_envelope (envelope)

class QueueServer (servers.Server) :
@servers.bind_in('rep', name='request')
def receive_request (self, socket, envelope):
object = self.handle_queue (envelope)k
socket.send_obj(object)

Chapter 2. Building Services

CHAPTER 3

ZeroMQ Transport Wrapper

dploy-lib provides a simple wrapper for zeromq. It provides some convenience methods and functions, but also defines
a standard messaging envelope for use in dploy applications.

Why create a wrapper?

dploylib.transport sets up the custom transport library used by dploy. This custom transport library is simply
a wrapper around zeromq. The main purpose of creating the wrapper is to allow for the usage of dploy’s Envelope.
This envelope will allow for greater extension later as well as allowing the transport layer to be replaced if we ever
need it. The main impetus for creating a wrapper is the inclusion of an encryption layer later down the line. However,
the wrapper is also able to simplify the usage of zeromq in any particular application.

The wrapper tries to stay as close to the original API of pyzqm as possible. This is to prevent the need to learn much
more than the zeromq guide provides.

Simple REQ-REP echo server

Here’s the REP server server.py:

from dploylib.transport import Context

def main () :
context = Context.new/()
socket = context.socket ('rep')
socket .bind('tcp://127.0.0.1:5555")

while True:
text = socket.receive_text ()
socket .send_text (text)

if _ name_ == '__main__ ':
main ()

dploy-lib Documentation, Release 0.0.1-dev

Now the REQ serverin client .py:

from dploylib.transport import Context

def main () :
context = Context.new()
socket = context.socket ('reqg'")

socket.connect ('tcp://127.0.0.1:5555")

socket.send_text ('hello')
text = socket.receive_text ()

print text

if name == '__main

main ()

First run the server in one process:

$ python server.py

Then run the client and you should see this:

$ python client.py
hello

All of zeromq’s socket types are available.

10

Chapter 3. ZeroMQ Transport Wrapper

CHAPTER 4

Dploy Notes

Here are a collection of documents describing portions of dploy’s architecture

Common Message and Data Structure Definitions

The following is a list of message and data schemas that are necessary for dploy. These structures are generally used
to define communication protocols between various services. They should be language agnostic.

BuildRequest

Used to describe build jobs. These are sent to the DeployQueue.

Schema

broadcast_id
A broadcast id of the format [random-uuid]:[commit]

app
The app name

archive_uri
URI to a tar.gz of the app

commit
The SHA1 commit of the app

update_message
A message about the update

release_ version
The release version to use. 0 means the latest version

11

dploy-lib Documentation, Release 0.0.1-dev

BroadcastMessage

Used for broadcasting messages to the client

Schema
type
The message type
Must be output or status

body
The message body

Must be data of type BroadcastOutputData or BroadcastStatusData Schema

BroadcastOutputData

type
Must be 1ine or raw

data
(optional) output string

BroadcastStatusData Schema

type
Must be info, error, or completed

data
(optional) A status message

AppBuildRequest

Used to describe app build jobs. These are sent to the BuildCenter. They are created by processing DeployRequests.

Schema

app_release
The current AppRelease

archive_uri
URI to a tar.gz file of the app’s repository

AppRelease

Used throughout different sections of the build process. It is also a major component of the cargo file. These snapshots
are also used to track versions of a particular app.

12 Chapter 4. Dploy Notes

dploy-lib Documentation, Release 0.0.1-dev

Schema

version
The release version number

app
The app name

commit
The SHA1 commit of the app

env
An EnvVars type

processes
A dict of the available processes and their associated commands

EnvVars

Dictionary of services and their environment variables. This is meant to be persisted in some kind of database.

ZoneDeployOrder

Instructions for a dploy-zone to deploy an app given its cargo file.

Schema

app
The app name

cargo_uri
URI to a downloadable cargo file

ZoneStopDeploy

Stop a set of running apps

Schema

apps
A list of apps to stop

4.1. Common Message and Data Structure Definitions 13

dploy-lib Documentation, Release 0.0.1-dev

14 Chapter 4. Dploy Notes

CHAPTER B

API

Services Library

class dploylib.services.Service (templates=None, config_mapper=None, coordinator=None)
The Service object provides a way to create a zeromq-based dploy service. In dploy, a the service object is in
charge of a combination of Server objects. Each of the Server objects acts as a definition for a server which
is used to spawn threads, processes, or greenlets of each server.

Parameters
* templates —alist of service templates to apply to this service
* config_mapper — default YAMLConfigMapper, configuration mapper for the service

e coordinator - the server coordinator for the service. Defaults to
ThreadedServerCoordinator

add_server (name, server_cls)
Register a Server to the Service instance

Parameters
e name — name of the server
e server_cls - A Server

run (*args, **kwargs)
A default method for running a service

start (config_file=None, config_string=None, config_dict=None)
Starts the service with the given configuration information. Configuration data is accepted from one of
three different types: a file path, a string, or a dictionary.

Parameters
* config_file —file path for the configuration

* config_ string - a string of the configuration

15

dploy-lib Documentation, Release 0.0.1-dev

* config_dict - adictionary for the configuration

stop ()
Stop the service

wait ()
Wait for the service forever or until it fails

Servers Library

class dploylib.servers.Server (name, settings, control_uri, context, poll_loop=None)
class dploylib.servers.ServerDescription (server_cls)

class dploylib.servers.DployServer (name, settings, control_uri, context, poll_loop=None)
The actual server behind the scenes

add_socket (name, socket, handler=None)
Add the socket and it’s handler

start ()
Run the poll loop for the server

dploylib.servers.bind in (name, socket_type, obj=None)
A decorator that creates a SocketDescription describing a socket bound to receive input. The decorated function
or method is used as the input event handler.

Parameters
* name — The name of the socket (for configuration purposes)
* socket_type (str)— The lowercase name of the zeromq socket type

* obj — (optional) A class or object that implements the deserialize method to deserial-
ize incoming data

Returns A SocketDescription

dploylib.servers.bind (name, socket_type)
A decorator that creates a SocketDescription that describes a bound socket. This socket does not listen for input.

Parameters
* name — The name of the socket (for configuration purposes)
* socket_type (str)— The lowercase name of the zeromq socket type

dploylib.servers.connect_in (name, socket_type, obj=None)
A decorator that creates a SocketDescription describing a socket connected to receive input. The decorated
function or method is used as the input event handler.

Parameters
* name — The name of the socket (for configuration purposes)
* socket_type (str)— The lowercase name of the zeromq socket type

* obj - (optional) A class or object that implements the deserialize method to deserial-
ize incoming data

Returns A SocketDescription

16 Chapter 5. API

dploy-lib Documentation, Release 0.0.1-dev

dploylib.servers.connect (name, socket_type)
A decorator that creates a SocketDescription that describes a connected socket. This socket does not listen for
input.

Parameters
* name — The name of the socket (for configuration purposes)

* socket_type (str)— The lowercase name of the zeromq socket type

Transport Library

class dploylib.transport .Context (zmg_context)
A wrapper around a zeromq Context

Parameters zmq context — The zeromq context

class dploylib.transport .Socket (zmq_socket, zmq_context)
A wrapper around a zeromq Socket

Parameters
* zmq_socket — The underlying zeromq socket
* zmg context — The zeromq context related to the zeromq socket

bind (uri)
Bind the socket to a URI

classmethod bind_new (socket_type, uri, options=None, context=None)
Create and bind a new socket

Parameters
* socket_type (str)— Name of the socket type
* uri — URI of the socket to bind to
* context — (optional) A Context. Defaults to creating a new Context

bind_to_random (uri, min_port=None, max_port=None, max_tries=None)
Bind the socket to a random port at URI

connect (uri)
Connect the socket to a URI

classmethod connect_new (socket_type, uri, options=None, context=None)
Create and connect a new socket

Parameters
* socket_type (str)— Name of the socket type
e uri — URI of the socket to connect to
* context — (optional) A Context. Defaults to creating a new Context

classmethod new (socket_type, context=None)
Creates a new socket

Parameters
* socket_type (str)— Name of the socket type

* context — (optional) A Context. Defaults to creating a new Context

5.3. Transport Library 17

dploy-lib Documentation, Release 0.0.1-dev

receive_envelope ()
Receive an Envelope

receive_obj (handler)
Receives an Envelope and calls an object to handle the envelope data.

Parameters handler — A callable that transforms the data into an object

receive_text ()
Convenience method to receive plain text

send_envelope (envelope)
Send an Envelope

send_obj (obj, id="")
Sends encoded an object as encoded data.

The encoding can be anything. Default is JSON. This could change later and should not affect communi-

cations.
The object must implement the method __serialize___

Parameters

* obj — An object that implements a serialize method that returns any data that can be

serialized (ie. lists, dict, strings, ints)
e id - The id for the envelope. Defaults to

send_text (text, id="")
Sends a simple text message

Parameters
¢ text — Text to send
e id - The id for the envelope. Defaults to

set_option (option, value)
Set a socket option

Parameters
* option (str)— Name of the option
* value (str or int. Depends on the option.)- Value of the option

class dploylib.transport .Envelope (id, mimetype, data, request_frames=None)
Dploy’s message envelope.

This is a standard definition so that all messages are decoded the same way. The envelope is as follows (for the

time being):

18 Chapter 5. API

dploy-lib Documentation, Release 0.0.1-dev

Note: The id portion of the envelope may seem like unnecessary data, but it allows the envelope to be used in
pub-sub effectively.

Parameters
* id (str)— A string id for the envelope
* mimetype (str)— The mimetype for the envelope
* data — The envelope’s body
classmethod £rom_raw (raw)
Creates an envelope from a tuple or list
Parameters raw (tuple or 1ist)-—Raw data for an envelope

classmethod new (mimetype, data, id="", request_frames=None)
Create a new envelope. This is the preferred way to create a new envelope.

Parameters
* mimetype — The mimetype for the envelope
* data — The envelope’s body
e id - (optional) A string id for the envelope. Defaults to “’

response_envelope (mimetype, data, id=None)
Shortcut to create a response envelope from the current envelope

By default this will create an envelope with the same request_frames, id and mimetype as this envelope.

transfer_ object ()
This is the object to be sent over the wire. The reverse of this is Envelope.from_raw

For zmq this should be an list

class dploylib.transport .PollLoop (poller)
A custom poller that automatically routes the handling of poll events

The handlers of poll events are simply callables. This only handles POLLIN events at this time.

5.3. Transport Library 19

dploy-lib Documentation, Release 0.0.1-dev

20 Chapter 5. API

CHAPTER O

Indices and tables

* genindex
* modindex

e search

21

dploy-lib Documentation, Release 0.0.1-dev

22 Chapter 6. Indices and tables

Python Module Index

d

dploylib.servers, 16
dploylib.services, I5
dploylib.transport, 17

23

dploy-lib Documentation, Release 0.0.1-dev

24 Python Module Index

Index

A

add_server() (dploylib.services.Service method), 15
add_socket() (dploylib.servers.DployServer method), 16

B

bind() (dploylib.transport.Socket method), 17

bind() (in module dploylib.servers), 16

bind_in() (in module dploylib.servers), 16

bind_new() (dploylib.transport.Socket class method), 17
bind_to_random() (dploylib.transport.Socket method), 17

C

connect() (dploylib.transport.Socket method), 17

connect() (in module dploylib.servers), 16

connect_in() (in module dploylib.servers), 16

connect_new() (dploylib.transport.Socket class method),
17

Context (class in dploylib.transport), 17

D

dploylib.servers (module), 16
dploylib.services (module), 15
dploylib.transport (module), 17
DployServer (class in dploylib.servers), 16

E

Envelope (class in dploylib.transport), 18

F

from_raw() (dploylib.transport.Envelope class method),
19

N

new() (dploylib.transport.Envelope class method), 19
new() (dploylib.transport.Socket class method), 17

P

PollLoop (class in dploylib.transport), 19

R

receive_envelope() (dploylib.transport.Socket method),
17

receive_obj() (dploylib.transport.Socket method), 18

receive_text() (dploylib.transport.Socket method), 18

response_envelope() (dploylib.transport.Envelope
method), 19

run() (dploylib.services.Service method), 15

S

send_envelope() (dploylib.transport.Socket method), 18
send_obj() (dploylib.transport.Socket method), 18
send_text() (dploylib.transport.Socket method), 18
Server (class in dploylib.servers), 16
ServerDescription (class in dploylib.servers), 16
Service (class in dploylib.services), 15

set_option() (dploylib.transport.Socket method), 18
Socket (class in dploylib.transport), 17

start() (dploylib.servers.DployServer method), 16
start() (dploylib.services.Service method), 15
stop() (dploylib.services.Service method), 16

T

transfer_object() (dploylib.transport.Envelope method),
19

W

wait() (dploylib.services.Service method), 16

25

	Wait, what is dploy?
	Building Services
	Getting started with services
	Servers Library

	ZeroMQ Transport Wrapper
	Why create a wrapper?

	Dploy Notes
	Common Message and Data Structure Definitions

	API
	Services Library
	Servers Library
	Transport Library

	Indices and tables
	Python Module Index

